
International Journal of Economic Sciences Vol. V, No. 3 / 2016

DOI: 10.20472/ES.2016.5.3.003

MEDIATION IN CAUSAL LOG-LINEAR MODELS

GLORIA GHENO

Abstract:
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interaction effect, which I call cell. After I calculate the effects in a mediation model with two parallel
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Introduction 

The causal analysis is important in many fields of research, such as in economics and 

in the social sciences, because the analyst seeks to understand the mechanisms of the 

examined phenomena using the relationships among the variables, i.e. the cause-and-

effect relationships, where some variables are the causes, others the effects. The term 

causality defines, therefore, a relationship between an event (the cause) and a second 

event (the effect), where the latter is interpreted as a consequence of the first event. In 

general in the analysis of the relations among variables it is, however, important to 

distinguish between "covariation" and "causation". The study of the “covariation”, or 

interdependence between two variables, which are considered on the same level, is 

used to measure the strength of the link between them, but not the direction, which 

assumes an order. A measure of “covariation” is the covariance. The analysis of the 

causation, or of the cause-and-effect relationships, however, is not "observable". The 

“covariation” involves, in addition to a theory where the cause-and-effect relationships 

are known a priori, the directionality of the action and the manifestation of a certain 

event as a direct and necessary consequence of the occurrence of another event or of 

a set of events. From this distinction  the famous phrase "Correlation does not imply 

causation" is born. The causal analysis aims to demonstrate the existence of relations, 

through which one or more cause variables produce one or more response variables, 

and to measure their intensity. The study of these causal relationships originated 

mediation analysis which seeks to discover the causal pathways through which the 

changes are transmitted from the cause to the effect. Mediation analysis originates from 

the literature of the linear-in-parameters models, and in particular from that of the 

structural equation model (SEM), going back to Wright (1923) and more recently it is 

found in the social sciences in the papers written by Baron and Kenny (1986) and by 

Bollen (1989). In recent decades many authors, including MacKinnon, Hayes and 

Preacher (MacKinnon et al., 2007; Hayes and Preacher, 2010; Hayes, 2013; Hayes and 

Preacher, 2014) have continued to study the causal effects in linear contexts or with 

particular linearity assumptions. Robins (2003) and Pearl (2001, 2009, 2012, 2014) try 

to find a causal theory applicable to all models but this suffers from problems in specific 

mediation models in nonlinear cases. Muthén and Asparouhov (Muthén,  2011; Muthén 

and Asparouhov, 2015) study the theories proposed by Pearl and by Robins applied to 

SEM with a non-linearity in the variables showing their similarities and their differences. 

 

In mediation analysis the variables can influence in causal way directly, indirectly, or in 

both ways, other variables. The set of all causal effects which influence a variable is 

called "total effect". The direct effect is the causal effect of a variable on another variable 

without intervening variables, while the indirect effect is the causal effect of a variable 

on another variable, considering it only through the intervention of other variables, called 

mediators. Hayes (2013) states that a model can have parallel or serial multiple 

mediators. In the presence of parallel mediators the influencing variable is modeled to 

influence directly and indirectly  the influenced variable, through two or more mediators 

which do not influence causally each other. This model assumes that the mediators can 

be correlated or not. In a model with serial mediators these influence causally each 
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other unlike that with parallel mediators. From the point of view of the identification of 

the effects these two types of models are similar. Only Preacher and Hayes’ causal 

theory (Hayes and Preacher, 2010; Hayes, 2013) can be applied in a model with serial 

mediators  or with correlated parallel mediators, while that proposed by Pearl (2014) 

can be applied to them under special linearity hypotheses. Both theories may be, 

however, applied in a model with uncorrelated parallel mediators. Another type of causal 

relations is the interaction, which occurs when the effect of a cause variable can depend 

in some way on the presence or absence of another cause variable and vice versa. A 

difference between Robins’ theory and that proposed by Pearl consists in the calculation 

of the intensity of the indirect effect in presence of interaction. In his theory Robins states 

that there is the total indirect effect and that pure, while Pearl considers only the latter. 

To explain the difference between the two effects I examine a linear model with the 

mediated variable which is dichotomous (for example 0 if the subject is not subjected to 

the treatment and 1 if the subject is subjected to the treatment) and I analyze its variation 

from 0 to 1. The difference between the two effects is due to the interaction between 

the mediated variable and the mediator (Haferman and Schwartz, 2009). In the total 

indirect effect the interaction between the mediator and the mediated variable is 

inserted, while in that pure it is not taken into consideration. In the literature, the 

interaction effect can be measured on additive or multiplicative scale and in many cases 

it induces that the effect of a variable on another varies by levels of a third and vice 

versa. Hayes (2013), unlike Pearl, generally considers a particular version of the 

interaction, the moderation, in which the effect of a variable on another varies by levels 

of a third, called moderator, but for which the opposite is not true. 

 

As previously noted the causality is typically studied in the linear models. These, 

unfortunately, require some features which are not always met by the analyzed data. 

For example, in most of the cases, the data collected from the surveys are represented 

by categorical variables. The log-linear models solve with a complementary and 

compact approach the problem of the multivariate analysis of the categorical variables. 

They, together with other techniques for the analysis of qualitative data, descend from 

the linear model, generalizing it with some significant changes (McCullagh and Nelder, 

1989). The linear model is a starting point for the development of the regression models 

and for the analysis of the variance in presence of quantitative data. When a variable of 

a contingency table is treated as response variable and the others are considered 

explanatory, the parametric techniques of  generalized linear type are very similar to the 

ordinary regression both in the analysis and in the estimation procedure. The ordinary 

regression, indeed, is the most suitable model of analysis to consider a response 

variable as a function of several explanatory variables. A model which is derived from 

the regression is however also used when a researcher does not want to distinguish the 

response variables from the explanatory variables. 
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Figure 1: Simple mediation model with 1 mediator and simple interaction model 

 
Source: Own path diagrams 

 

In literature the logit models and those log-linear are procedures which are derived from 

the generalization of the ordinary regression and which perform a quantitative analysis 

of multivariate frequencies. The logit models assume as criterion variable the logarithm 

of the odds, i.e. the ratio between the probabilities of the subjects which are in two 

dichotomous mutually exclusive categories. In the log-linear models the criterion 

variable is represented directly by the probabilities in the multiplicative version or  by 

the log probabilities in the additive version. The logit models explicitly define a response 

variable and in this they are opposed to the log-linear models which do not assume, 

however, causal relationships among the variables. Of course from a logit model it is 

possible to obtain a log-linear model and vice versa.  

 

In the definition of a logit model it is implicit that no structure among the explanatory 

variables is taken into account. It is possible, however, to change these logit models 

incorporating the structure of the explanatory variables, but these models are not like 

those canonical. To resolve this problem, Goodman (1973) proposes a modeling 

method to more steps for the response variables, which is called "modified path analysis 

approach" or causal log-linear model. His procedure involves the construction of a 

series of marginal tables of incremental complexity which are used to estimate the logit 

parameters of the various variables. 

 

A problem in the use of the log-linear causal models is, however, the impossibility of 

calculating all causal effects (Bergsma et al., 2009) and this was, and still is, one of their 

limits. In this paper, to solve this problem, I propose a new method which calculates the 

causal effects in a non-linear-in-parameters model, as in that causal log-linear in 

probabilistic metric, using the odds ratio and a modified version of Pearl’s causal theory. 

My method also solves the problem of the correlated mediators in the non-linear-in-

parameters models with the introduction of the new concept of uncorrelated conditional 

probability. According to Pearl (2014), indeed, if the parallel mediators are correlated, it 

is possible to calculate the indirect effect only in particular linear models and this is 

another limitation to the use of nonlinear models. 

 

The remaining part of this paper is organized as follows. Section 2 introduces the log-

linear model and its causal version. Section 3 describes my causal theory in a simple 

mediation model and its version with the introduction of the multiplicative interaction.  
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Figure 2: parallel multiple mediators model and serial multiple mediators model 

 

Source:Own path diagrams  

 

Section 4 describes my causal theory in a model with uncorrelated and correlated 

parallel mediators. Section 5 illustrates some applications of my causal theory in 

marketing. 

 

Log-linear model and causal log-linear model 

Before introducing the method to calculate the causal effects, it is useful to underline 

the passage which leads a log-linear model to becoming a causal log-linear model. It 

represents a log-linear model in which the variables have a causal role, where, for 

example, the variable X becomes the cause and the variable Y the effect. Vermunt 

(1996), too, distinguishes between log-linear models and causal log-linear models. The 

log-linear model describes the observed frequencies, it measures the strength of the 

association among variables, but it does not distinguish between response variables 

and explanatory variables. As mentioned earlier, the causal log-linear model, introduced 

by Goodman (1973) and also called "modified path analysis approach", is a log-linear 

model which considers a causal order a priori of the variables. This model is formed by 

a "recursive" system of logit models in which the variable, which is presented as 

response in a particular logit equation, can be one of the explanatory variables in one 

of the consequential equations (Vermunt, 2005). The starting point of Goodman’s 

method is the diagram of the effects proposed by Wright (1921). 
 

Wright proposes a diagram, called path diagram, to represent the relationships among 

the variables. In the path diagram, the causal direct relationship between two variables 

is represented by an arrow which goes from the influencing variable to the influenced 

variable while the correlation between two variables is represented by a double arrow. 

If two variables are not connected then there is not a direct relationship between them. 

The first diagram of Figure 1 represents a simple mediation model in which the variable 

X influences both directly and indirectly the variable Y. The second path diagram of 

Figure 1 shows a model of interaction, in which the variables X and Z affect directly the 

variable Y, but in which also their joint effect XZ influences Y. Other examples of path 

diagrams can be the models with two mediators Z and W illustrated in Figure 2. 

 

To show the difference between the log-linear models and the causal log-linear models,  

I consider a model with three categorical variables X, Z and Y. In the log-linear model 

the joint probability of these three variables is defined as: 
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 𝑃(𝑋 = 𝑥, 𝑍 = 𝑧, 𝑌 = 𝑦) = 𝜂𝜇𝑋=𝑥𝜇𝑍=𝑧𝜇𝑌=𝑦𝜇𝑋=𝑥,𝑌=𝑦𝜇𝑋=𝑥,𝑍=𝑧𝜇𝑍=𝑧,𝑌=𝑦𝜇𝑋=𝑥,𝑍=𝑧,𝑌=𝑦 

 

(1) 

where x, z and y indicate arbitrary categories of the variables X, Z and Y. The 

interpretation of the parameters of the equation (1) is the following. The parameter η is 

called overall effect and it is a constant which ensures that the sum of the probabilities 

is equal to 1 (Heinen, 1996). The parameters 𝜇𝑋=𝑥, 𝜇𝑍=𝑧 and 𝜇𝑌=𝑦 are, respectively, the 

one-variable effects of the categories x, z and y of the variables X, Z and Y. The 

logarithmic transformation of these parameters indicates the partial skewness of the 

variables X, Z and Y (Heinen, 1996). The parameters 𝜇𝑋=𝑥,𝑌=𝑦, 𝜇𝑋=𝑥,𝑍=𝑧 and 𝜇𝑍=𝑧,𝑌=𝑦 

are respectively  the two-variable effects of the categories x and y of X and Y, of the 

categories x and z of X and Z and of categories z and y of Z and Y. They can be 

interpreted as a measure of the strength of the partial statistical relationship between 

two variables (Heinen, 1996). A practical example may be that of a policy maker who 

wants to study a state funding for the school abandonment. He might be interested in 

seeing if the family income affects the continuation of the studies. To understand if there 

is a disparity in the continuation of the studies depending on the income  he will look to 

the two-variable parameter which measures the relationship between income and 

school abandonment  under the control of a third variable which can be sex. If this 

parameter is not equal to 1, this means that there is a disparity and therefore he will try 

to make policies to eliminate it. The parameter 𝜇𝑋=𝑥,𝑍=𝑧,𝑌=𝑦 is the three-variable effect 

of the three categories x, z and y and it measures as odds ratio of two specified variables 

vary by levels of a third variable (Heinen, 1996). I underline, then, that the three-variable 

parameter measures the causal multiplicative interaction of X and Z on Y. Recalling the 

example of the policy maker, the interaction causes the difference due to sex of the 

relationship between the probability of continuing and that of  leaving, both conditioned 

by two values of income. The interaction, then, shows that the familiar income and the 

abandonment are associated differently according to sex. In this paper, in particular, I 

consider the hierarchical log-linear models in which, if a parameter is equal to 1, all the 

parameters of the upper levels are equal to 1, and then, for example, if 𝜇𝑋=𝑥,𝑍=𝑧 is equal 

to 1, also 𝜇𝑋=𝑥,𝑍=𝑧,𝑌=𝑦 must be equal to 1. Under this hypothesis, then, if two variables 

are conditionally independent from the rest, the corresponding two-variable parameter 

will be equal to 1 (Edwards, 1995). 

 

To simplify I define the variables X, Z and Y binary (x, z, y = 0,1) and because the 

number of parameters is larger than the number of probabilities (24> 8), the parameters 

of the equation (1) are not estimable without the addition of constraints. I constrain then 

the parameters with the dummy code method so that they are identified, that is: 

 

 𝜇𝑌=0 = 𝜇𝑋=0 = 𝜇𝑍=0 = 1

𝜇𝑍=0,𝑌=0 = 𝜇𝑋=0,𝑌=0 = 𝜇𝑍=0,𝑌=1 = 𝜇𝑋=0,𝑌=1 = 𝜇𝑍=1,𝑌=0 = 𝜇𝑋=1,𝑌=0 = 1

𝜇𝑋=0,𝑍=0 = 𝜇𝑋=0,𝑍=1 = 𝜇𝑋=1,𝑍=0 = 1

𝜇𝑋=0,𝑍=0,𝑌=𝑖 = 𝜇𝑋=0,𝑍=1,𝑌=𝑖 = 𝜇𝑋=1,𝑍=0,𝑌=𝑖 = 𝜇𝑋=1,𝑍=1,𝑌=0 = 1     𝑖 = 0,1

 

(2) 
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With these constraints the estimated parameters are reduced to 8 and they become 

estimable. 

 

The log-linear model does not give a causal order but it  only studies the association 

among the variables. Returning again to the example of the policy maker, the log-linear 

model studies if there is disparity in the continuation of studies, i.e. it investigates 

whether abandonment and income are associated, but it does not specify which is the 

cause and which is the effect. If a researcher wants to study how the income (cause) 

affects the abandonment (effect) he must proceed to the log-linear causal models. To 

transform a log-linear model in a causal log-linear model, considering the causal order 

of the first model of Figure 1, I must assume that the interaction term 𝜇𝑋=1,𝑍=1,𝑌=1 is 

equal to 1, because, if it is present, it introduces the causal multiplicative interaction of 

X and Z on Y. The presence or absence of this parameter, indeed, determines the 

presence or absence of the multiplicative interaction which causes that the effect of a 

variable on another variable depends on a third variable. Following the probability 

structure proposed by Goodman (1973), the causal model of a simple mediation model 

can be written as a decomposition of the joint probability in conditional probabilities, i.e. 

P (X, Z, Y) = P (Y | Z, X) P (Z | X) P (X). If I write the simple mediation model of Figure 

1 in causal log-linear terms, I obtain: 

 

 
𝑃(𝑋 = 𝑥) =

𝜇𝑐
𝑋=𝑥

1 + 𝜇𝑐
𝑋=1 = 𝜂𝑐

𝑋𝜇𝑐
𝑋=𝑥

𝑃(𝑍 = 𝑧|𝑋 = 𝑥) =
𝜇𝑐
𝑍=𝑧𝜇𝑐

𝑋=𝑥,𝑍=𝑧

1 + 𝜇𝑐
𝑍=1𝜇𝑐

𝑋=𝑥,𝑍=1 = 𝜂𝑐
𝑍|𝑋=𝑥

𝜇𝑐
𝑍=𝑧𝜇𝑐

𝑋=𝑥,𝑍=𝑧

𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧) =
𝜇𝑌=𝑦𝜇𝑋=𝑥,𝑌=𝑦𝜇𝑍=𝑧,𝑌=𝑦

1 + 𝜇𝑌=1𝜇𝑋=𝑥,𝑌=1𝜇𝑍=𝑧,𝑌=1
= 𝜂𝑌|𝑋=𝑥,𝑍=𝑧𝜇𝑌=𝑦𝜇𝑋=𝑥,𝑌=𝑦𝜇𝑍=𝑧,𝑌=𝑦

 

 

(3) 

where c points out the causal log-linear parameters and η is the normalization factor. 

The causal log-linear parameters are estimated from the conditional probabilities, 

precisely from the conditional odds, while the log-linear parameters from the joint 

probability. The parameters of the probability P (Y = y | X = x, Z = z) are the only which 

are the same in both models. The equations (1) and (2) show an important aspect which 

differentiates the causal log-linear models from the log-linear models. This 

differentiation depends on the asymmetric representation which the causal log-linear 

models give to the relations among the variables. The causal log-linear models include 

only the parameters which represent the relationships between the cause variables and 

the effect variables, while a log-linear model can be regarded as a representation of the 

relationships, bivariate and multivariate, among all variables included in the model. 

 

Causal theory  in a mediation model with 1 mediator 

In literature the causal log-linear effects are examined in partial way and for this reason, 

a true causal analysis does not exist. When a researcher considers the simple mediation 

model of Figure 1, the log-linear literature (Bergsma et al., 2009) calculates, using the 

odds ratio, the total effect and the direct effect, but it does not study the indirect effect 
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and this  leads to not fully understand the relationships among the variables. The odd 

is the ratio between the probability of those who are in a category and the probability of 

those who are not in that category. Its explanation is the possibility that an individual 

selected in random way is in a predetermined given category rather than in any of the 

others (Knocke and Burke, 1980). In the example of the policy maker, the odd for the 

variable abandonment is the ratio between the probability of continuing and the 

probability of not continuing the studies. It is possible also to calculate the conditional 

odds: they, given the category of a second variable, define the relationship between the 

probability of a category and that of the remaining categories of the same variable. In 

the example of the policy maker the conditional odd is the ratio between the probability 

of continuing and the probability of not continuing given, for example, the income. The 

ratio between the conditional odds is called odds ratio. The odds ratio describes the 

relationship between two binary variables; if the variables are categorical, a 

transformation in binary variables is required to use it. For example, if I want to analyze 

the relationship between the categorical variables X and Y with 5 categories, I transform 

them into binary variables: the transformed variables X and Y are equal to 1, if their 

original value is 5, 0 otherwise. The relationships analyzed by the odds ratio can be 

associative or causal (Zhang, 2008). The associative relationships are measured using 

the effective response, while those causal with the potential response. If the two types 

of odds ratio are different, this is due to the influence of a third variable called confusion 

variable (Zhang, 2008; Szumilas, 2010). This confounding variable is causally related 

to the response variable, but it is not causally linked to the other causal variable 

(Szumilas, 2010). If the two correlated variables X and Z influence therefore causally 

the response variable Y, Z becomes a confounding variable of the relationship between 

X and Y, remembering that the correlation is not a causal relationship. In a simple 

mediation model without confounding variables, the total effect (TE) and the direct effect 

used in the log-linear literature (LDE) are given by the following formulas: 

 

 
𝑂𝑟𝑥0,𝑥1

𝑇𝐸 =
𝑃(𝑌 = 1|𝑋 = 𝑥1)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0)

𝑃(𝑌 = 1|𝑋 = 𝑥0)
 

(4) 

 

 
𝑂𝑟𝑥0,𝑥1

𝐿𝐷𝐸 (𝑍) =
𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)

𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)
 

(5) 

 

where the subscript (𝑥0,𝑥1) indicates that the causal effect measures the effect of the 

variation of X from 𝑥0 to 𝑥1. In the next part of my analysis I put 𝑥0 = 0 and 𝑥1 = 1 by 

convention. I note, so, that these causal effects coincide with the definitions of total 

effect and controlled direct effect proposed by Pearl (2001, 2009, 2012, 2014). He, 

however, never uses the odds ratio to calculate the causal effects, but he prefers the 

use of the conditional moments. To better understand the log-linear causal models and 

to apply them to a wide range of case studies, I suggest a causal analysis, using the 

odds ratio with Pearl’s causal theory, when possible, or, otherwise, with his version  

modified by me. I note that the direct effect is always equal to the causal two-variable 

parameter 𝜇𝑋=1,𝑌=1 and that it is independent of the value of the mediator Z. If in a linear-
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in-parameters model without interaction the variables X and Z  affect the variable Y, but 

X does not influence Z, the total effect of X on Y is equal to the direct effect of X on Y. 

This, however, does not occur in a causal log-linear model without interaction: I find, 

indeed, that, when 𝜇𝑋=1,𝑍=1,𝑌=1 is equal to 1, the total effect is not equal to the direct 

effect, but it involves another effect, which I call cell. The cell effect, therefore, is only 

present if more variables directly affect the same variable, as in the case in which X and 

Z influence Y. If there is not the direct effect between X and Y (𝜇𝑋=1,𝑌=1 = 1) or between 

Z and Y (𝜇𝑍=1,𝑌=1 = 1), the cell effect takes the value 1 and the total effect is equal to 

the direct effect of Z on Y or of X on Y. The cell formula is the following: 

 

 𝐶𝑒𝑙𝑙
𝑥0,𝑥1
𝑒𝑓𝑓𝑒𝑐𝑡(𝑍)

= [
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑋 = 𝑥0)𝑍

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑋 = 𝑥0)𝑍

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0)

𝑃(𝑌 = 1|𝑋 = 𝑥0)
] 

[
𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)

𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)
]

−1

 

(6) 

 

In this simple mediation model the cell effect, not depending on the value of the mediator 

Z, can be written as CellEffect (Z) = CellEffect, i.e. the cell effect can be interpreted as 

an effect of constant interaction, but it is important to underline that in a causal log-linear 

model with multiplicative interaction it is not constant. The cell effect, in general, does 

not depend on the relationship existing between the variables X and Z, i.e. on the 

parameter 𝜇𝑐
𝑋=1,𝑍=1

, but only on their joint presence in influencing the response variable 

Y. To explain more clearly the behavior of the cell effect I use an example in the 

marketing field. A marketing expert may be interested in customer loyalty analyzing his 

satisfaction. Customers who purchase a product which they consider good-quality and 

with a good quality / price ratio (value) will be satisfied and thus they will repurchase 

more willingly the product. The relation quality-value-satisfaction can be configured as 

a mediation model where the variable value is the mediator. The cell effect is present 

when the quality and the product value influence  together the satisfaction, but it does 

not depend on the relationship between the quality and the value, which in this case is 

causal. The cell  effect affects the direct effect of quality on satisfaction and it is born 

from the only joint presence of quality and value as causes of satisfaction, but it does 

not depend on the valuation of  the product  value. The total effect and the direct effect  

used in the log-linear literature are the odds ratio version of  the total effect and of the 

controlled direct effect provided by Pearl (2009, 2012, 2014). For this reason I propose, 

in the odds ratio version, his indirect effect 

 

 𝑂𝑟𝑥0,𝑥1
𝐼𝐸

= [
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑋 = 𝑥1)𝑍

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑋 = 𝑥1)𝑍

] [
1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0)

𝑃(𝑌 = 1|𝑋 = 𝑥0)
] 

(7) 

 

and his decomposition of the total effect 
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𝑂𝑟𝑥0,𝑥1

𝑇𝐸 = 𝑂𝑟𝑥0,𝑥1
𝐿𝐷𝐸 (𝑍)𝐶𝑒𝑙𝑙

𝑥0,𝑥1
𝑒𝑓𝑓𝑒𝑐𝑡(𝑍)⏟              

𝑂𝑟
𝑥0,𝑥1
𝑁𝐷𝐸

1

𝑂𝑟𝑥1,𝑥0
𝐼𝐸  

(8) 

 

to which I add my decomposition of Pearl’s natural direct effect  into cell effect  and into 

LD effect. In his theory, he, indeed, has two direct effects: the natural direct effect and 

the controlled direct effect. The first measures the variation of the variable Y when the 

variable X varies and the mediator Z remains constant at the value obtained from the 

initial value of X, while the second measures the variation of Y when X varies and the 

mediator Z remains fixed to a particular value. Returning again to the example of 

marketing expert, the natural direct effect measures how the customer satisfaction 

varies as the product quality varies, considering the product value equal to that achieved 

by the initial quality. The controlled direct effect, or LD, measures how the customer 

satisfaction varies as the product quality  varies considering fixed the product value. 

 

If the effect of the variable X on the variable Y depends on the value of the mediator Z, 

I consider a mediation model with a single mediator and with the multiplicative 

interaction. In this model, then the variable X directly influences Z and the variable Y is 

influenced directly by the variables X and Z, and by their joint effect, due to the 

interaction term  𝜇𝑋=1,𝑍=1,𝑌=1. My formulas (4 ), (5), (6), (7) and (8) remain, however, 

equally valid to calculate the causal effects. The direct effect of X on Y, used in the log-

linear literature, becomes a function of the mediator Z, i.e. 𝜇𝑋=1,𝑌=1𝜇𝑋=1,𝑍=𝑧,𝑌=1. 

Consequently, the cell effect also becomes a function of Z. The natural direct, indirect 

and total effects, however, do not become function of Z. The indirect effect of a model 

with the multiplicative interaction remains equal to that of a model without the 

multiplicative interaction, this in perfect agreement with the concept of the indirect effect 

proposed by Pearl, coinciding with that pure proposed by Robins, as explained in the 

introduction. 

 

Causal theory  in a mediation model with 2 parallel mediators 

Very often the variable X, however, affects the variable Y across multiple mediators. 

Consequently, to arrive at a solution I had to complicate the simple mediation model 

adding another mediator in  parallel way so as to obtain the first model of Figure 2, 

where the causal effect of the variable X is mediated by two mediators Z and W and 

where there are no interactions, i.e. 𝜇𝑋=1,𝑍=1,𝑌=1 = 𝜇𝑋=1,𝑊=1,𝑌=1 = 𝜇𝑍=1,𝑊=1,𝑌=1 =

𝜇𝑋=1,𝑍=1,𝑊=1,𝑌=1 = 1. I do not consider the interactions only for simplicity. Following 

Goodman (1973), the joint probability becomes equal to the product P (Y | Z, W, X) P 

(Z, W | X) P (X) and the causal log-linear representation of this model results to be 

 

 𝑃(𝑋 = 𝑥) = 𝜂𝑐
𝑋𝜇𝑐

𝑋=𝑥

𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥) = 𝜂𝑐
𝑍|𝑋=𝑥

𝜇𝑐
𝑍=𝑧𝜇𝑐

𝑊=𝑤𝜇𝑐
𝑋=𝑥,𝑍=𝑧𝜇𝑐

𝑋=𝑥,𝑊=𝑤𝜇𝑐
𝑍=𝑧,𝑊=𝑤

𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧,𝑊 = 𝑤) = 𝜂𝑌|𝑋=𝑥,𝑍=𝑧,𝑊=𝑤𝜇𝑌=𝑦𝜇𝑋=𝑥,𝑌=𝑦𝜇𝑍=𝑧,𝑌=𝑦𝜇𝑍=𝑧,𝑌=𝑦
 

 

(9) 
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where the parameter 𝜇𝑐
𝑍=𝑧,𝑊=𝑤

 measures the correlation of the two mediators, or more 

precisely their association being categorical variables. If the mediators are not 

correlated (𝜇𝑐
𝑍=𝑧,𝑊=𝑤

=1), the causal effects can be simply calculated using the odds ratio 

version of the causal theory proposed by Pearl (2001, 2009, 2012, 2014), who holds 

separate the analysis of the mediators and who inserts in the natural direct effect  that 

mediated by the mediator not considered. I prefer, however, to unify the indirect effects 

of the two mediators, examining them together, because this allows me to eliminate the 

problem, noted by Pearl (2014), of the identification of the natural direct effect in the 

nonlinear models when the mediators are serial. Returning to the previous example, if 

the marketing expert studies  the relationships among the variables quality-value-

satisfaction and future behavior, which measures the customer loyalty, he uses a model 

with two serial mediators like that of the second diagram of Figure 2, where value and 

satisfaction are the two mediators Z and W. The mediation of both mediators, if taken 

together, is measured by the indirect effect and, making so, the natural direct  effect 

becomes identifiable. In the example of the marketing expert, then, I consider the 

indirect effect of quality on future behavior mediated both by the product value and by 

the customer satisfaction. The indirect effect, for any separate mediator, may be, 

however, calculated with the formula (7) in the case of two uncorrelated parallel 

mediators. In a mediation model with uncorrelated parallel mediators the formulas of the 

total effect remain equal to those of the model with a single mediator (formulas (4) and 

(8)) while the direct effect proposed in literature, the cell effect and the indirect effect 

become, after appropriate modifications, respectively: 

 

 𝑂𝑟𝑥0,𝑥1
𝐿𝐷𝐸 (𝑍)

=
𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)

𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)
 

(10) 

 

 𝐶𝑒𝑙𝑙
𝑥0,𝑥1
𝑒𝑓𝑓𝑒𝑐𝑡(𝑍) =    (11) 

 
[
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥0)𝑍,𝑊

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥0)𝑍,𝑊

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0)

𝑃(𝑌 = 1|𝑋 = 𝑥0)
] 

[
𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)

𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)
]

−1

 

 

 
𝑂𝑟𝑥0,𝑥1

𝐼𝐸 = [
∑ 𝑃(Y = 1|X = x0, Z = z,W = w)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥1)𝑍,𝑊

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥1)𝑍,𝑊

] 
(12) 

[
1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0)

𝑃(𝑌 = 1|𝑋 = 𝑥0)
] 

 

I note that the direct effect proposed in literature remains equal to 𝜇𝑋=1,𝑌=1 as in the 

model with a single mediator and without the multiplicative interaction. These equations 

can also be applied to a model with serial mediators, replacing in them the conditional 

probability of the mediators Z and W with the product P (W | X, Z) P (Z | X). If I calculate, 

however, the causal effects with these formulas in a model with correlated mediators, I 
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would give a causal importance also to the correlation and so I would insert a distortion 

of the effects due to it. I propose, therefore, a modification to eliminate the role of the 

correlation so as to remove the distorting effects. Recalling that the conditional 

probability of the mediators Z and W, given the mediated variable X, is equal to 

 

 𝑃(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥) = 𝜂𝑐
𝑍,𝑊|𝑋=𝑥

𝜇𝑐
𝑍=𝑧𝜇𝑐

𝑊=𝑤𝜇𝑐
𝑋=𝑥,𝑍=𝑧𝜇𝑐

𝑋=𝑥,𝑊=𝑤𝜇𝑐
𝑍=𝑧,𝑊=𝑤 (13) 

 

I propose the elimination of parameter 𝜇𝑐
𝑍=𝑧,𝑊=𝑤

, which measures the correlation, so as 

to consider only the causal relationships and thus the conditional probability P (Z, W | 

X)   becomes 

 

 �̃�(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥) = �̃�𝑐
𝑍,𝑊|𝑋=𝑥

𝜇𝑐
𝑍=𝑧𝜇𝑐

𝑊=𝑤𝜇𝑐
𝑋=𝑥,𝑍=𝑧𝜇𝑐

𝑋=𝑥,𝑊=𝑤 (14) 

 

where the parameters mu are the same as the formula (13). Substituting in the above 

equations for P (Z, W | X) its new version, called uncorrelated conditional probability, I 

obtain special formulas so as to be able to calculate the causal effects also in presence 

of correlated mediators. They are: 

 

 
O r̃𝑥0,𝑥1

𝑇𝐸 =
�̃�(𝑌 = 1|𝑋 = 𝑥1)

1 − �̃�(𝑌 = 1|𝑋 = 𝑥1)

1 − �̃�(𝑌 = 1|𝑋 = 𝑥0)

�̃�(𝑌 = 1|𝑋 = 𝑥0)
 

(15) 

 

 
O r̃𝑥0,𝑥1

𝑇𝐸 = 𝑂𝑟𝑥0,𝑥1
𝐿𝐷𝐸 (𝑍)𝐶𝑒𝑙𝑙̃

𝑥0,𝑥1
𝑒𝑓𝑓𝑒𝑐𝑡(𝑍)⏟              

O r̃
𝑥0,𝑥1
𝑁𝐷𝐸

1

O r̃𝑥1,𝑥0
𝐼𝐸  

(16) 

 

 
O r̃𝑥0,𝑥1

𝐼𝐸 = [
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)�̃�(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥1)𝑍,𝑊

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)�̃�(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥1)𝑍,𝑊

] 
(17) 

[
1 − �̃�(𝑌 = 1|𝑋 = 𝑥0)

�̃�(𝑌 = 1|𝑋 = 𝑥0)
] 

 

Table 1: causal log-linear parameters 

 First dataset Second dataset Third dataset 

μX=1,Z=1,Y=1  2.8826*  

μX=1,Y=1 1.9240** 1.4042 3.9711*** 

μZ=1,Y=1 2.4038*** 3.5385** 2.9848** 

μW=1,Y=1   9.3261*** 

μY=1 0.4881*** 0.2826*** 0.0408*** 

μc
X=1,Z=1 3.3059*** 3.5534*** 2.5099*** 

μc
X=1,W=1   2.8914** 

μc
Z=1 0.4659*** 0.3390*** 0.2198*** 

μc
W=1   0.0362*** 

μc
X=1 1.7132*** 1.2278° 0.1832*** 

Signif. Codes: 0”***”    0.001”**”    0.01”*”    0.05”°”    0.1””    1 
Source: Data used as examples in Gheno (2011) and in Gheno (2015) 
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 𝐶𝑒𝑙𝑙̃
𝑥0,𝑥1
𝑒𝑓𝑓𝑒𝑐𝑡(𝑍) =    (18) 

 
[
∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)�̃�(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥0)𝑍,𝑊

1 − ∑ 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)�̃�(𝑍 = 𝑧,𝑊 = 𝑤|𝑋 = 𝑥0)𝑍,𝑊

1 − �̃�(𝑌 = 1|𝑋 = 𝑥0)

�̃�(𝑌 = 1|𝑋 = 𝑥0)
] 

[
𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥1, 𝑍 = 𝑧,𝑊 = 𝑤)

1 − 𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)

𝑃(𝑌 = 1|𝑋 = 𝑥0, 𝑍 = 𝑧,𝑊 = 𝑤)
]

−1

 

 

where �̃�(𝑌|𝑋) = ∑ 𝑃(𝑌|𝑋, 𝑍,𝑊)�̃�(𝑍,𝑊|𝑋)𝑍,𝑊 . I note that only the equation of the direct 

effect proposed in the log-linear literature remains unchanged, while all other formulas 

of the causal effects, having the correlated mediators, logically change. 

 

Numerical studies 

In this section I apply my causal theory to empirical data in which the variables are 

binary with ordered categories (0 = low, 1 = high value). The first two examples consider 

the relationship among a typical product (in this case Sauris’ ham), the satisfaction for 

its festival and the future behavior of the customers. The third example considers the 

relationship among the quality of a fast food (in this case Mc Donald), the positive and 

negative emotions of the costumer and his future behavior. The application of my causal 

theory in this analysis allows to understand how to stimulate the sales, to increase the 

flow of tourists in a particular festival or the loyalty of the costumers in commercial 

business. This analysis is applied in marketing examples, but it can of course be used 

in many other economic or social sciences sectors. 

 

The first dataset is composed of three dichotomous variables (X measures the interest 

in Sauris’ ham, considering the possibility of buying this product, Z measures the 

satisfaction about Sauris’ Festival, considering the happiness that an individual feels if 

he thinks  he will participate in the event and Y is the future behavior, considering 

whether an individual will buy the Sauris’ ham more often). The parameters estimated 

by the causal log-linear model are shown in Table 1. The two-variable parameters are 

all significant, i.e. all different from 1. According to the traditional log-linear literature, the 

causal two-variable parameters are the causal direct effects. In this case, because all 

causal two-variable parameters are greater than 1, an increase of the variable X 

produces an increase of the variable Z, and the same result occurs in the relationships 

between the variables X and Y, and between the variables Z and Y. Now I calculate the 

effects using the formulas (5), (6), (7) and (8). The total effect is equal to 2.4008, then 

an increase of the variable X produces an increase of the variable Y, while the indirect 

effect is equal to 1.2845, and then an increase of the variable X produces, indirectly, an 

increase of the variable Y. The cell effect is equal to 0.9741 and, being less than 1, it 

mitigates the direct effect used in the log-linear literature (LDE). Recalling that the cell 

effect arises from the presence of two variables influencing Y and that in this case it 

decreases the direct effect of X on Y, the natural direct effect becomes equal to 1.8741. 

Consequently, even for the natural direct effect, an increase of X produces an increase 

of Y. From this analysis, I conclude that if a customer is interested in Sauris’ ham, he 
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will buy this product most often also thanks to the felt satisfaction for his presence at 

the Festival. In marketing research, this shows that an event linked to the product can 

increase its sales even if the role of the event is less important than the role of the 

interest in the product. This result is evident by analyzing the relationship between the 

indirect effect and the direct effect (indirect effect <direct effect). The joint effect of the 

interest in the product and of the satisfaction procured by the Festival is due to the mere 

presence of the two variables which influence a third and it decreases the direct effect 

used in the log-linear literature, recalling again that the cell effect is less than 1. 

 

Now I consider a second dataset, which yet consists of three dichotomous variables (X 

measures the interest in Sauris’ ham considering the possibility to taste the product, Z 

measures the satisfaction about Sauris’ Festival considering the quality of the products 

presented during the event and Y is the future behavior considering whether an 

individual will recommend other people to participate in the Festival). The parameter 

values are shown in Table 1. It is essential to consider 𝜇𝑋=1,𝑌=1, although it is not 

significant, because 𝜇𝑋=1,𝑍=1,𝑌=1 is significant. This necessity is due to a feature of the 

hierarchical log-linear model in which it is required that the n-variable parameters are 

present when there are the n+1-variable parameters. The total effect is equal to 3.1886, 

then an increase of X produces an increase of Y. The indirect effect is equal to 1.4493 

then an increase of the variable X produces, indirectly, an increase of the variable Y. 

Now I consider the effect of the multiplicative interaction, with parameter greater than 1, 

which influences the LD effect and the cell effect. The cell effect with Z = 1 is 0.42705, 

mitigating thus  the LD effect, while with Z = 0 it is 1.2310, increasing thus the LD effect. 

When the mediator Z is high (Z = 1), the LD effect is equal to 4.0477 (i.e. 

𝜇𝑋=1,𝑌=1𝜇𝑋=1,𝑍=1,𝑌=1), while when the mediator Z is low (Z = 0), it is equal to 1.4042 (i.e. 

𝜇𝑋=1,𝑌=1). For each value of satisfaction, then, the effect of total interaction (effect cell 

(Z) x 𝜇𝑋=1,𝑍=𝑧,𝑌=1) is always equal to 1.2310, and consequently the natural direct effect 

is always equal to 1.7286. From the results of this analysis, I conclude that if a customer 

is interested in Sauris’ ham, then he will advise other people to participate in the event 

more often, thanks to the quality of the products presented and to the overall combined 

effect of interest and of satisfaction. 

 

The third dataset is instead composed of four dichotomous variables (X measures 

McDonald atmosphere, considering the music in the fast food, Z measures the positive 

emotions, W measures the absence of negative emotions and Y is the desire of 

returning of the costumer). The interactions, being not significant, are not considered. 

The parameter, which determines the presence of the correlation between Z and W, is 

significant (𝜇𝑐
𝑍=1,𝑊=1

= 4.1166, p-value = 0) and for this reason I must to apply the 

formulas (15), (16) , (17) and (18). The remaining parameters are significant and they 

are shown in Table 1. In this case, since the causal two-variable parameters are all 

greater than 1, an increase of the influencing variables produces an increase of the 

influenced variables, according to the traditional log-linear literature. The total effect is 

equal to 5.1348, the indirect effect is equal to 1.5664, the cell effect is equal to 0.9035 

and then the natural direct effect is less than the direct effect of the log-linear literature 
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(3.5879 <3.9711). From the results of this analysis I conclude that a good atmosphere 

of the fast food (quality of the commercial business) positively influences, both directly 

and indirectly, the return of the customers. 

 

Conclusions 

When a researcher analyzes the data, he is interested in understanding the 

mechanisms which regulate the changes of the variables, and to know them, he uses 

the causal effects. If he wants to use the log-linear models to study the data, 

unfortunately, he has not available an exhaustive causal theory, but only  few comments 

on some papers in which the odds ratios are used. The causal theory, indeed, focused 

mainly on the  linear models or on models in which some kind of linearity for the mean 

of the variables is assumed. In a causal log-linear model, however, there is no 

assumption of linearity for the mean of the variables. Among the causal authors Pearl 

(2001, 2009, 2012, 2014) is one of the few who deals with causality applicable to any 

type of model. To overcome these various limitations and problems I used the causal 

concepts outlined by Pearl (2001, 2009, 2012, 2014) but  formulating a new causal 

theory to calculate the causal effects in the log-linear models and using the odds ratio 

so that the parameters have the same interpretation of the log-linear literature. During 

the development of my theory I found a new effect which I called cell effect. It can be 

interpreted as an interaction effect which occurs each time that I consider two variables 

which directly affect a third. Another limitation in the log-linear model is related to the 

calculation of the indirect effect when the parallel mediators are correlated. To solve this 

problem I propose a new concept, which I call the uncorrelated conditional probability, 

which, used in the formulas of the model with uncorrelated mediators, allows to calculate 

the causal effects eliminating the problem of the correlation. In conclusion my causal 

theory, applied to the causal log-linear models, allows the calculation  of the causal 

effects for each type of path diagram, and then, with its use, it is always possible to 

measure their intensity. 
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