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1 Introduction 

The paper deals with how mismodelling of policyholder’s age can induce misleading conclusions 

about the gender differences in claim frequency within vehicle insurance. In fact, these 

differences have been observed across the policyholder’s age and several studies dealt with this 

phenomena. However, their conclusions were mostly drawn on average or expected frequencies 

and involved the grouped data. By contrast, this study is based on individual data with unit policy 

duration and puts the emphasis on correct modelling of functional form of the age to show how 

mismodelling suppresses the obvious interaction and how the inferences depend on the 

categorization of continuous variables. In addition, the study also verifies as well as validates the 

“gender” effect across the policyholder’s age with given level of confidence. 

The preference of dataset in which each policy lasts 1 year is motivated by potential bias when 

grouped data are collected over different time exposure. Suppose two policies for which we 

observed a claim. One terminates at the end of the year, while the other ended in the middle of 

the year. Although the claim count is the same, the annual claim frequency of the latter policy is 

twice higher than the former because the policy was terminated untimely. 

Both policyholder’s age and gender are relevant risk factor from the statistical point of view. 

However, the gender might be a proxy for other driver’s characteristics. For instance, it is 

accepted that male drivers pose higher risk than female drivers because of increased aggression, 

lower limits tolerance and other psychological reasons, see for instance (Cestac et al., 2011) or 

recently (Harbeck and Glendon, 2018). Further, the different claim frequency is also observed 

within various subgroups of the policyholders’ age as well as differences between males and 

females across various age. It represents effect modification that requires involving an interaction 

between gender and age into the claim frequency model. 

In these perspectives, the prohibition to use gender for setting premium appears against all 

empirical observations and statistical results. However, drawing conclusions by comparing 

average or expected claim frequencies is insufficient and must be supported and confirmed by 

proper statistical verification. Our results partially support the judgement of European Court of 

Justice that banned to use the gender as a rating factor since 21.12.2012. 

To model the claim frequency, we adopted the concept of generalized linear models (GLMs) 

where the relationship between the frequency and individual characteristics is expressed via a 

link function transforming the claim frequency into a linear combination of given individual risk 

factors. However, the linearity assumption may yield incorrect assessments of effect of 

policyholder’s age on the claim frequency. In addition, as we show in this paper, the obvious 

interaction with gender is rejected on the 95% confidence level. 

Therefore, we involved fractional polynomials (FPs) to specify the functional form correctly. On 

one hand, these functions are more sensitive to influential observation than linear form because 

such observation drives not only the value of estimated parameters, but also the degree and 

power of FP. On the other hand, this approach represents very flexible approach that increases 

the fit of the data as well as helps to avoid mismodelling when the true function is non-linear.  
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Further, to avoid estimation of FPs and still to respect a potential non-linearity, continuous 

variables are sometimes categorized into several groups that allows using the linear model. Then, 

the non-linearity is handled by non-proportional effect of each successive category. 

However, the categorization might be controversial. First, there is a problem how to determine the 

number of cutpoints and where to place them. The best choice is to use recognized cutpoints that 

are mostly unavailable. More naturally, the cutpoints are given by percentiles (e.g. quartiles) but it 

worsens study comparison where each of them is based on different dataset and different 

percentiles. Second, categorization concerns a loss of information and examination of interaction 

between categorical and categorized continuous variable yields difficult interpretation of the 

model due to including many interaction terms. In addition, as we show in this paper, the 

conclusions about “gender” effect depends on categorization itself that increases the type I error 

to detect the obvious interaction between gender and age. 

Thus, using the motor hull insurance data of Czech insurer, we subject the interaction between 

policyholder’s age and gender to further analysis and we verify it statistically. We show that 

mismodelling the functional form of policyholder’s age as well as its categorization yields 

misleading conclusions and, finally, we demonstrate how these inferences depend on 

categorization itself. The remainder of this paper is organized as follows. Section 2 summarizes 

the literature in this field of study. A claim frequency model based on negative binomial (NB) 

distribution is described in Section 3, as well as fractional polynomials and effect modification. 

Section 4 shows how the mismodelling and categorization affects the conclusion about the 

“gender” effect on claim frequency and presents the conclusions drawn on correctly specified 

form of policyholder’s age. Section 5 gives the conclusions of this study. 

2 Literature review 

Although the Poisson as well as negative binomial distribution had been known for long time, only 

development of GLMs by (Nelder and Wedderburn, 1972) put the emphasis on distributional 

properties and non-linear models that incorporate explanatory predictors.  

The first application of GLMs was used to model the claim frequency for marine insurance and 

the claim size for motor insurance in (McCullagh and Nelder, 1983). More applications of GLMs 

occurred mostly after the 1990, when the insurance market was being deregulated in many 

countries and the GLMs were used to undertake a tariff analysis, for example (Andrade-Silva, 

1989), (Brockman and Wright, 1992) or (Renshaw, 1994). GLMs are also used for premium 

optimization, for example (Zaks et al., 2006) or (Branda, 2014), and for the estimation of solvency 

capital requirement that has appeared recently in (Valecký, 2017). 

The first natural choice for modelling count data is Poisson regression model, but it is mostly not 

sufficient because of overdispersion. Therefore, various types of mixed Poisson model are 

applied. The negative binomial model was derived from Poisson-gamma mixture distribution, 

which is now commonly symbolized as NB2, (Cameron and Trivedi, 1986). The comparison of NB 

with Poisson can be found in (David, 2015). Common alternative for overdispersed data is also 

quasi-Poisson model, see for instance (Ver Hoef and Boveng, 2007) for comparison with NB 

model. In addition, the negative binomial model appeared in many extension, for instance as a 

zero-inflated model, for instance (Kim et al., 2016), or as a generalized model, (Greene, 2008). 

For review about variations of negative binomial model, we refer to (Hilbe, 2011). 
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To obtain a well fitted model, it is crucial to identify the relevant factors as emphasized (Kafková 

and Křivánková, 2014), while (Valecký, 2016) summarized the modelling issues necessary for a 

good claim frequency model and highlighted the non-linear effect of specific risk factors. 

To relax the assumption about the linearity, some authors categorize the continuous factor 

(Kafková and Křivánková, 2014) or (David, 2015), while the others showed that this approach 

might be generally dangerous, e.g. (Mazumdar and Glassman, 2000), (Royston et al., 2006)) or 

(Naggara et al., 2011). 

Generalised additive models (GAMs) represents one out of the method to handle the non-

linearity. However, we prefer fractional polynomials used extensively by (Royston and Altman, 

1994), (Royston et al., 1999), (Sauerbrei and Royston, 1999) because of better interpretation and 

higher transportability. 

The EU Gender Directive of December 13th 2004 (Council Directive 2004/113/EC) provided for 

equal treatment between men and women in the access and supply of goods and services. 

However, an exception in Article 5(2) allowed the proportional difference in insurance premiums. 

Then the judgement of EU’s Court of Justice prohibited to use the gender as a rating factor since 

21.12.2012 although several studies pointed out potential increase in danger of adverse selection 

as well as morale hazard, e.g. (Oxera, 2010, 2011). For all that, the gender is still involved as a 

relevant risk factor in models for the purpose of modelling claim frequency in vehicle insurance, 

e.g. (David, 2015), (Hsu et al., 2016) or (Summun et al., 2018), even though (Ayuso et al., 2016) 

or (Verbelen et al., 2018) proved that gender is a proxy for another driver’s characteristics, such 

as experience or driving habits. 

3 Negative binomial model 

Because the Poisson model does not accommodate the overdispersion, we used the negative 

binomial model. Let’s suppose negative binomial distribution with probability mass function in the 

form of 
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where   is the negative binomial heterogeneity or overdispersion parameter, iw  is the exposure, 

iy  is the observed claim frequency and i  is the mean response. In terms of exponential 

dispersion model, ( )
1

log 1i


+  represents the cumulant ( )b   that is assumed to be twice 

continuously differentiable with an invertible first derivative because these determine the mean 

and the variance function as follows 
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Letting ( )expi i = , it yields the non-canonical negative binomial model that is referred as NB2 

and where i  represents the systematic component 

 0 1 1i i ij ijx x   = + ++ = x β , (5) 

where ijx  is an observed value on the variable jx  for each policy 1, ,i n=  and   are unknown 

parameters to be estimated. 

To obtain the estimates of  , the maximum likelihood Newton-Raphson type algorithm is 

preferred to IRLS method because observed and expected information matrices are not 

equivalent in NB2 model and it is generally assumed for non-canonical models that observed 

standard errors are less biased than expected standard errors. 

Further, the log-likelihood function is obtained by substituting ( )exp ix β  for each instance of   in 

(2), thus 
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The goodness of fit test is performed using the deviance statistic in the form of 

 ( ) ( )( )2D y = − , (7) 

where ( )iy  and ( )i  is the log-likelihood of the saturated model and the fitted model 

respectively. The value of D  is approximately chi-squared distributed with ( )1n J− −  degrees of 

freedom, where n  and J  represents the number of policies and factors. 

The deviance statistic is also used to perform the likelihood ratio (LR) test for model comparison. 

The statistic is calculated as 

 ( )( ) ( )( ) 1 0

1 02 2D   = − + − , (8) 

where ( )( )1

12 −  and ( )( )0

02 −  are the log-likelihood of nested and full model. The test statistic 

is approximately chi-squared distributed with 0 1J J−  degrees of freedom if the models have 0J  

and 1J  parameters and if the condition 0 1J J  holds. 
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3.1 Fractional polynomials  

The effect of risk factor on the systematic component is not necessary linear and some 

transformation is required. One out of the techniques used to handle the non-linearity involves 

fractional polynomials. Let the expression (5) be rewritten in the form of 

 ( ) ( )0

1 1

jmJ

i jk jk ij

j k

g F x  
= =

= + , (9) 

where ( )jk ijF x  is a particular type of power function and jm  is the degree of FP with powers 

1 2, , , mp p p , denoted as ( )1 2 mp p pFPm . The powers could be any number, but estimation of 

general powers requires non-linear optimization, which may cause problem with convergence. 

Therefore, (Royston and Altman, 1994) restricts the power in the set  2; 1;0.5;0;0.5;1;2;3S − − , 

where 0 denotes the log of the variable. The remaining functions are defined as 
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for 1, , jk m=   and restricting powers kp  to those in S . 

Thus, for given degree of FP, all models are estimated and the best model is represented by the 

highest value of log-likelihood function. Note that, for one variable, the set S  generates 8 models 

for FP1, 36 models for FP2, and so on, yielding a great flexibility. However, the functions of 

degree 2m   are rarely used.  

Next, the variables entering into the model can influence each other as well as the degree and 

powers of FPs, therefore (Sauerbrei and Royston, 1999) originated a routine for FP selection in 

multivariable framework, that is called as a MFP algorithm with these steps, see the reference for 

the original version, 

1. The full linear model is fitted.  

2. Let 0c = , to initialize the cycle counter. 

3. Let 1j =  to initialize the variables counter within each cycle. 

4. All other variables are currently included in the model as adjustment terms. If the jx  is a 

continuous variable, run the subroutine to identify best FP based on closed-test 

procedure. Otherwise, test at the 1  level if to include jx  in the model and skip the 

following closed-test subroutine.  

i) Test the model with the best FP2 for jx  against the full model with linear function for 

jx  at the 2  level using three d.f. If the test is not significant, use the linear function 

and stop this subroutine, otherwise continue. 
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ii) Test the model with the best FP2 for jx  against the model with the best FP1 at the 2  

level using two d.f. If the test is not significant, use FP1 and stop the subroutine. 

Otherwise use the best FP2 for jx . 

5. Let 1j j= + . If j  is smaller or equal to the number of variables, process the next factor 

(step 4). 

6. Let 1c c= +  and repeat the whole procedure until the convergence. 

3.2 Evaluation of effect modifiers 

Some risk factors in the systematic component (5) may interact, i.e. one modifies the relationship 

between the outcome and the other explaining variable entered into the model. 

Let us consider the interaction between binary variable 1x  (gender) and continuous variable 2x  

(policyholder’s age). Their interaction can be expressed as the changing slope parameter of 1x  

that depends on the level of 2x , thus 

 ( )
1 21 1 2 1 2 1 2 2 1 1x xx x x x x x      =+ == +  for all 2x . (11) 

Clearly, the coefficient 
1 2x x   varies according to the level of 2x  and can also have different signs 

for different values of 2x , so the effect of 1x  is ambiguous. In addition, the statistical significance 

cannot be tested using the z-test (considering the coefficient 2 ) because the standard error of 

the estimated changing parameter 
1 2x x   is in fact computed as 

 ( ) ( ) ( ) ( )
1 2

22 2

1 1 1 2 2 1 2 1 22 ; .x xSE x x x x x    = + +var var cov  (12) 

It follows that the z-statistics and the significance themselves depend on the level of 2x , which 

means that the interactions may be statistically significant only for some observations. Therefore, 

the LR test based on the deviance statistic is preferred to the z-test. 

Thus, the model including the interaction is usually defined as follows 

 ( ) ( )0 1 1 0 2 12 21 12 0 1Ix x I xx x    == + + =+ , (13) 

where ( ) 1I =condition  if condition holds, 0 otherwise. The model is tested against the nested 

model 

 0 1 1 2 2x x  = + +  (14) 

by LR test, which statistic follows chi-squared distribution with one degree of freedom. 

Then, the effect of 2x  (policyholder’s age) conditioned on 1x  (gender) is given by ( )0 2 02 2x x =  

and ( )1 2 1 12 2x x  = +  for males and females respectively, yielding the “gender” effect 

 

 ( ) ( ) ( ) ( )1 2 0 2 1 12 01 2 2g x x x x    = − = + − . (15) 
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4 Assessment of “gender” effect across the policyholder’s age 

In this section, using the motor hull insurance data of Czech insurer, we demonstrated how the 

conclusions might be manipulated using the methodology and how important is to model the 

functional form correctly. We firstly presented a model with linear systematic component and a 

model with categorized policyholder’s age, in which we showed how the inferences depend on 

categorization itself. At the end, we evaluated the effect of gender across the age properly by 

model that involves FPs. We also verified statistically that the age modifies the effect of gender 

and vice versa and we additionally performed a partial internal validation to support the 

importance of the conclusions.  

We used the individual data that encompassed the characteristics of policies during the years 

2004-2010 (74,721 observations) and these following risk factors were considered: age of car 

(agecar); engine displacement in cm3 (volume) and engine power in kW (kW); policyholder's 

age (ageman); car value (value); number of citizens in a region (nocit); gender of policyholder 

(gender; 0 – male, 1 - female); district area (district; 14 various regions in Czech republic); 

and type of fuel (fuel; 0 – petrol, 1 - diesel). Remind that each policy had the unit duration. 

Finally, note that engine displacement is also one of the key factor of the engine power. 

Therefore, both volume and kw cannot be used together in the model because of high mutual 

dependence indicated by the correlation coefficient of 0.8348. Thus, we defined a new variable 

(kwvol) that combines volume and kw as a ratio of engine power in kW and engine 

displacement as follows: 1000.kw volume  

4.1 Model with linear systematic component 

First, we show how conclusions might be influenced when the policyholder’s age is mismodelled. 

We estimated the model with linear systematic component and, thereafter, we extended the 

model by adding the interaction gender × ageman to assess the effect of gender across the 

age. 

Let 1x =gender , 2x =ageman  and let x  be other adjustment variables, the estimated model is 

 ( )* * *

1 2 02 12 1, , 2.7338 0.0109 0.0085 0.1104 ,x x x x x = − − +− +x x  

where 

 ( ) ( )02 2 12 2, ,x x I x x I= = = =gender gendermale female   

and ( ) 1I =condition  if condition  is true, 0 otherwise. 

The coefficient -0.0109 and -0.0085 represents the conditional effect of ageman for males and 

females respectively, indicating that the systematic component as well as claim frequency is 

decreasing as age increases. In addition, the coefficient on 02x , which is smaller than on 12x , 

indicates that difference by gender is increasing. 

Note that the positive coefficient 0.1104 on gender does not indicate itself that the claim is 

generally more likely from females rather than from males because it also depends on the age 
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itself. Therefore, we calculated the “gender” effect that represents the varying difference between 

both gender categories across the age, thus  

 ( ) ( )1 2 2 20.0085 0.0109 0.1104 0.0024 0.1104g x x x x= − − +− = + ,  

which confirms the increasing difference in claim frequency across gender as the age increases. 

Next figure shows the estimated conditional effects as well as the “gender” effect with 95% 

confidence interval.  

Figure 1 Model with linear systematic component. Left panel: estimated effects of age in each gender group. Right 

panel: gender effect function with 95% confidence interval. Horizontal dash line represents zero and the main effect of 

gender in a model excluding interaction. 

 
Source: Own based on STATA 12 
 

Clearly, the function representing the conditional effect of age for males has higher negative slope 

that yields the increasing difference in claim frequency from female drivers. It coincides with the 

increasing “gender” effect shown in the right figure. 

Although female drivers are evaluated more risky in general, the “gender” effect suggests that the 

difference by gender is smaller for young drivers than for middle-aged. However, considering 

confidence interval of that effect, it does not differ from the main effect of the model without 

interaction significantly, indicating that the interaction is not statistically significant. It was also 

confirmed by likelihood ratio test, which yielded a chi-squared value, with one degree of freedom, 

of 1.03 and the corresponding p-value of 0.3105. 

Thus, using the model with linear systematic component, we would conclude that females report 

claim more often than males regardless of the age and that the difference in claim frequency by 

gender does not vary significantly across the age. In this case, the variable gender would be 

considered as confounder rather than effect modifier. However, we showed further that the effect 

of age is in fact mismodelled, suppressing this effect modification. 

4.2 Model with categorized age 

In next step, we categorized the policyholder’s age to handle its non-linear effect. The 

categorization is popular because it relaxes the assumption about the linear systematic 
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component and the model remains easily interpretable. It is used frequently to perform a tariff 

analysis in which the policies are grouped into tariff cells, associating policies with similar values 

of risk factors. However, there is no rule for categorization.  

First, we grouped the age using the quartiles, i.e. 18-40, 41-51, 52-60, above 60 years, yielding a 

new variable catage. Again, we estimated the model involving this categorized variable and we 

extended this model by interaction between gender and catage, keeping all other adjustment 

variables in the model. Let 1x =gender  and let jx  be the second, third and fourth age category, 

i.e. for 2,3,4j = , we obtained the model 
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Note that the “gender” effect in the first age category is determined by the estimated constant and 

coefficient on gender. Thus, the systematic component as well as claim frequency for males in 

the first age category is given by the constant -3.0703 and for females of the same category by 

-3.0703 + 0.1701, indicating that the claim is more likely from females at this age rather than from 

males. The other estimated coefficients indicate that the claim is less likely as the age category 

increases regardless the gender (except for the last age group of females). However, the gender 

difference across the age is varying. Conditional effect of age for both gender is as follows 

( )
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22
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1 2 3 4
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x
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− −

−

= − +
 

which yields the “gender” effect 

 ( ) ( ) ( )011 2 2 2 3 40.0593 0. .0891 0. 0. 11292 170g x x x x x x = − = + + +    

Note that all coefficient are positive, implying that females are more risky for the insurer in each 

age category. In addition, each coefficient on succeeding age category is higher than the 

coefficient on preceeding group, indicating the increasing difference by gender. 

Unfortunately, although we tried to handle the non-linear effect of age, the estimated effect of 

gender is not statistical significant and conclusions coincide to these that we drew from the model 

with linear component. Next figure represents the “gender” effect for all age category including the 

95 % confidence interval. 
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Figure 2 Gender effect across various age group including 95% confidence interval. Horizontal dash line represents 

zero and the main effect of gender in a model excluding interaction. 

 

Source: Own based on STATA 12 
 

The figure shows clearly the increasing systematic component for females. However, none of the 

“gender” effect did not differ significantly from the main effect, indicating that the interaction is not 

significant either if the non-linearity is handled by categorization. Thus, we would conclude again 

that the claim frequency does not differ for both gender category across the age. The LR test 

yielded the chi-squared value of 2.55 (with three degrees of freedom) that corresponds to the p-

value 0.1106. 

Let’s show why the categorization should be avoided. Suppose two another categorization 

patterns: 1) 18-26, 27-54 and above 54 years; 2) 18-35, 36-65 and above 65. The estimated 

“gender” effects of both model are shown in next figure. 

Figure 3 Gender effect across various age group patterns including 95% confidence interval. Horizontal dash lines 

represent zero and the main effect of gender in a model excluding interaction. 
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Source: Own based on STATA 12 

 

Figure shows that using these different categorization patterns yields different conclusions. In 

contrast to the right figure, the left figure shows clearly that the interaction is insignificant with 

95% confidence level, while the second categorization pattern indicates that the claim frequency 

is lower than frequency given by the main effect with 95% confidence. It was also confirmed by 

LR test, providing the significance 0.1723 and 0.0172, which corresponds to the chi-squared 

value (with 2 degrees of freedom) of 1.86 and 5.67 respectively. 

In addition, using these two categorization patterns, we found that there is no statistical difference 

by gender in claim frequency for the first age category. Males and females are statistically equally 

risky for the insurer, while there was a significant difference by gender when we considered 

categorization by quartiles. Obviously, the conclusions should not depend on the categorization, 

which proves that the categorization might yield misleading conclusions.  

4.3 Model involving fractional polynomials 

Finally, we involved FPs to handle the non-linearity and to avoid the categorization that incurs the 

loss of information available in the dataset. We applied the MFP algorithm, in which we obtained 

FP powers of (3 3) for kwvol, (-1 3) for ageman, (0.5) for value, (2) for agecar, and a linear 

term for nocit. 

Thereafter, the model was extended by adding the interaction gender ×  ageman. Because the 

MFP applies the centring and scaling on continuous variables (not relevant to the conclusion), let 

1x =gender, 
2

100
x =

ageman
 and ( )2 2 /100x mean x= . The other adjustment variables *

x  were also 

transformed and entered into the model. Thus, we obtained the model 

 
( )*

1 2 01 02

* *

11 12 1

, , 2.6914 0.4826 1.5552

0.2699 0.7240 0.2989 ,

x x x x

x x x





= − + +

+ + + +

x

x
   

 where 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1

01 2 2 11 2 2

3 3 3 3

02 2 2 12 2 2

, ,

, ,

x x x I x x x I

x x x I x x x I

− − − −−

=

= −

− −

= = =

= = =

gender gender

gender gender

male female

male female
  

and ( ) 1conditionI =  if condition  is true, 0 otherwise. 

Next, we tested the model against the nested model without interaction using likelihood ratio test, 

which yielded a chi-squared value of 50.22 with two degrees of freedom. The corresponding 

p-value was less than 0.00001, indicating that the interaction between gender × ageman is 

significant.  

Further, the effect of age conditioned on gender is given by the model as follows 
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( ) ( ) ( )

( ) ( ) ( )2

2

1 1

2

1 1 3 3

0 2 2 2 2

3 3

1 2 2 2

0.4826 1.5552 ,

0.2699 0.7240 0.2989,

x x x x

x x x

x

x x





−

− −

−= +−

− +−+

−

=
  

which yields the “gender” effect 

 ( ) ( ) ( ) ( ) ( )1 1 3 3

1 1 1 0 1 2 2 2 20.2127 0.8312 0.2989.g x x x x x x x  − −= − = +−− − −   

Because of non-linear transformation of age as well as due to centring and scaling, the 

interpretation of conditional effects as well as “gender” effect is represented by next figure. 

Figure 4 Model involving FPs. Left panel: estimated effects of age in each gender group. Right panel: gender effect 

function with 95% confidence interval. Horizontal dash line represents zero and the main effect of gender in a model 

excluding interaction. 

 
Source: Own based on STATA 12 

 

The left figure shows clearly that claims are less likely from young women than young men in the 

18-26 years interval, whereas they are more likely over 26 years. However, the “gender” effect 

plot indicates that the effect of gender changed from negative to positive and that it significantly 

differs from the main effect on the interval 18-32 years. More important, it is obvious that there is 

no statistical difference between males and females within the 18-30 years interval as well as 

above 75 years, while claims are more likely from women in the interval 31-74 years. Thus, 

although we observed higher frequency for young men, there is no statistical difference from 

young women. Significant distinction is confirmed in the middle age only, i.e. above 31 years.  

Finally, although the interaction gender × ageman was statistically confirmed, the spurious 

interaction may be of concern because the effect modification might be data-driven. Because we 

did not have external data, we performed a partial internal validation by bootstrap resampling. We 

generated 100 bootstrap samples and we estimated the “gender” effect for each. Next figure 

compares the original and bootstrap “gender” effect functions.  
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Figure 5 Mean and 95% confidence interval of gender effect function from 100 bootstrap replications and gender effect 

function on the original data with 95% confidence interval. 

 

Source: Own based on STATA 12 

 

Clearly, even if the data were changed randomly with replacement, significant “gender'' effect was 

detected. The original and the bootstrap “gender” effect as well as both relevant 95% confidence 

intervals differ only for ageman above 60 years, indicating that the “gender” effect function is 

data-driven on this interval. However, they also confirmed no difference in claim frequency by 

gender in the 18-30 years interval, while significance difference appeared above 30 years. 

5 Conclusion 

Using the motor hull insurance data of Czech insurer, the paper demonstrated how the 

conclusions might be manipulated using the methodology and how important is to model the 

functional form correctly.  

The study showed that mismodelling of policyholder’s age induce misleading conclusions about 

the gender differences in claim frequency. Assuming the linear form for the age, the gender was 

not identified as an effect modifier for the age with 95% confidence. It was also confirmed that 

categorization incurs the loss of information and that the interaction between age and gender was 

not detected although the non-linear effect of age was treated as non-proportional effect of age 

groups. It implies that linear form as well as the categorization increase the type I error to detect 

the obvious interaction between gender and age. In addition, using different categorization 

patterns, we showed that the significance of effect modification might depend on the 

categorization and yield contrary conclusions about the effect modification. 

Involving fractional polynomials confirmed that gender is significant effect modifier for the age, in 

particular for young policyholders. In addition, the study also validates the “gender” effect across 

the policyholder’s age with 95% confidence. In these perspectives, the EU’s ban to use gender for 

setting premium appeared reasonable at least for young drivers. On the other hand, significant 

differences in claim frequency by gender appeared and were validated for the age above 30. 
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However, it does not necessary imply a gender disparity. As others showed, the gender 

represents a proxy for another characteristic, such as experience, driving habits, etc., and the 

question is how the insurer will deal with this problem. For instance, one out of the insurance 

companies in Czech republic started to set the premium for vehicle insurance according to the 

annual mileage.  

Thus, we may conclude that gender should be entered into the claim frequency model at least as 

a proxy if another relevant data are not available. However, such model cannot be used for 

setting premium. It also implies that the interaction between gender and age should be 

considered in such frequency model. In addition, the linear form of the policyholder’s age must be 

carefully verified otherwise some proper technique to handle non-linearity of the age, such as 

fractional polynomials, should be involved and, finally, categorization should be avoided because 

the approximation of non-linear effect is insufficient. 
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